a2 United States Patent

Cui et al.

US009478313B2

US 9,478,313 B2
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54) FAST SEMANTIC PROCESSOR FOR

PER-PIN APG
(71) Applicant: Advantest (Singapore) Pte. Ltd.,
Singapore (SG)
(72) Inventors: Huachun Cui, Singapore (SG); Kazi
Iftekhar Ahmed, Singapore (SG)
(73) Assignee: ADVANTEST CORPORATION,
Tokyo (JP)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 14/333,022
(22) Filed: Jul. 16, 2014
(65) Prior Publication Data
US 2015/0194223 Al Jul. 9, 2015
(30) Foreign Application Priority Data
Jul. 16, 2013 (CN) eevveriercne 2013 1 0298422
(51) Imt.CL
GO6F 11/22 (2006.01)
GO6F 17/50 (2006.01)
G1IC 29/10 (2006.01)
G1IC 29/56 (2006.01)
(52) US. CL
CPC ... G1IC 29/10 (2013.01); G11C 29/56004

(2013.01)

(58) Field of Classification Search
USPC 714/703; 702/120, 108; 716/136
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,184917 B2* 2/2007 Pramanick GOIR 31/3183
702/108

7,761,751 B1* 7/2010 West GO1R 31/31908
714/703

2005/0251359 Al* 11/2005 Caoccccoevvevnnnn. GO6F 11/273
702/120

2006/0074625 Al* 42006 Maedac.ocoon. GOG6F 8/20
704/8

* cited by examiner
Primary Examiner — Brian Ngo

(57) ABSTRACT

System and method for implementing a memory test lan-
guage compiler. The compiler includes a fast semantic
processor for interpreting programming patterns in a test
program, including converting stateful patterns into stateless
patterns, and a device access timing generation module for
generating an output based on the stateless patterns. The fast
semantic processor can generate a closure for a device
access line as the output. In the state of the closure, each
device access line is in a closed state. A functor is formed
from the interdependency of the variables and the loop
dependency and a cache is used to handle recursive vari-
ables. The functor is propagated to device access lines as
output, wherein the functor references the cache when
needed.

17 Claims, 2 Drawing Sheets

S202

Receiving s tew! prograos

SE&

Creating a standalone free
from the abstvact syniax dree

Y

Calenlating variabie
interdepeudency

3208

Calculmting dcop
dependeacy for each
assignment

e

Tatng a fonclor 1o trace
assigonsenty, and using 3
cachie to bandle reenrsive

variables

3213

Propagating the fanclor oz
device aveess line

US 9,478,313 B2

Sheet 1 of 2

Oct. 25, 2016

U.S. Patent

;

L "Old

% .mem.wﬁmm@“w \J.M,M...M}M

mding

Iz
IMNPON
HOIJRIDUD)
Funuiy
§$300Y 21A2(]

ds8d

...................... |
WEigoi]d

1521,

U.S. Patent

Oct. 25, 2016

Sheet 2 of 2

£y -
\.Aa:i}a_ ?

SIVINE & toxd prngran

Creating & standslione tree
Hom e shatrs

3 47 volax e

Caloulsting varsable
wterdepeadancy

(’j

avsgromenty, and using »
>

& Rnctor o fraves

ache o haudle recursive
rarishies

3313 Propagating the fwotorin a

FiG. 2

US 9,478,313 B2

1l
<5

US 9,478,313 B2

1
FAST SEMANTIC PROCESSOR FOR
PER-PIN APG

CROSSREFERENCE

This application claims the benefit of Chinese Application
No. 201310298422.7 entitled “Fast Semantic Processor for
Per-pin APG” filed on Jul. 16, 2013, which is incorporated
herein by reference.

TECHNICAL FIELD

The following generally relates to testing of integrated
circuits, and more particularly to a fast semantic processor
for per-pin APG (Automatic Pattern Generator).

BACKGROUND

A test processor can be used in smart test of an IC
(Integrated Circuit) such as a memory or SoC (System on
Chip) IC. However, usually there is no register unit or
calculation unit in the test processor and so conditional
execution cannot be performed. The test processor typically
can only execute a nested repeat tree like the following:

repeat 10{
100 vectors
repeat 5{
1024 vectors

}

30 vectors

wherein “repeat” represents an act of repeating, for
example, “repeat 10” representing repeating 10 times the
content in the parentheses thereafter; and “vector” represents
a data vector. By executing the repeat tree, the test processor
can generate the binary sequence for the test. The test
processor includes, for example, a repeat tree execution
module that converts the repeat tree into a binary sequence,
and an excitation signal generation module that generates an
excitation signal to be input into a test device based on the
binary sequence.

An MTL (Memory Test Language) compiler is typically
used to convert a test program written in a test language into
a repeat tree. Because an MTL compiler can generate a
repeat tree for each pin, it is also commonly referred to as
a per-pin algorithmic pattern generator (APG).

The test language could be C language or any other
suitable language. C language and other language similar to
C language will be referred to as C-style language herein-
after, and an illustration will be made by example of C-style
language. In this case, the MTL compiler converts C-style
programming patterns (a C-style program) into repeat trees
for respective pins, an example of which is as follows:

10

20

25

30

35

40

45

50

55

60

65

for (i = 0; <1024, i++)

{

dev_ace(i); pin0: repeat 512{HL}
}
apgAccess:
PEA pinl: repeat 256{0011)
{ :interface: i
pin0 {H,L} i[0]

pinl {0,1} i[1]

wherein “dev_acc” references to a device access timing
generation module in the MTL compiler, “apgAccess” is an
instance of the device access timing generation module, and
“pin 0: repeat 512 {HL}” and “pinl: repeat 256{0011}” on
the right side represent repeats (or repeat trees in complex
cases) executed for pin No. 0 and pin No. 1, respectively,
which are also called device access lines. In this manner, the
above test program is converted into repeat trees for respec-
tive pins.

An MTL compiler typically includes a semantic processor
and one or more device access timing generation modules.
The semantic processor can interpret the programming pat-
terns (program sentences) of a test program. Then, the
device access timing generation module converts the inter-
preted patterns into repeat trees for respective pins based on
information (for example, timing information) contained in
the device access timing generation module about the
respective pins. The information can be stored in advance, or
can be provided externally based on characteristics of the
pins of a Device Under Test (DUT).

In a typical MTL compiler, the semantic processor per-
forms semantic interpretation by expanding a variable to an
expression. Through the semantic processor, each assign-
ment is propagated to expressions that reference the
assigned variable. Thus, the last expression depends only on
loop variables and can be easily evaluated. Each recursive
variable is represented by a special expression that calcu-
lates the value recursively.

The MTL compiler assumes that the programming pat-
terns of the test program are almost stateless (e.g., there is
no historical record or historical state) so that each device
access line can be converted into a repeat tree independently.
Compression can be performed during merging of the repeat
trees generated from multiple device access timing genera-
tion modules for one pin. If there is a recursive variable in
the test program, for example, a=a+3, it can be optimized by
the semantic processor to a=a,,,+3*I, wherein “a,,,~ repre-
sents an initial value of the variable a, and “I” represents an
index of recursion times. In this example, the expression
a=a+3 for the recursive variable a is stateful (e.g., there is a
historical record or historical state) programming pattern,
and thus calculation of the variable a relies on the historical
state of a. By converting the expression of the recursive
variable “a” into a=a,,+3*], the converted expression
becomes stateless. At this time, the value of a can be
calculated based only on the initial value a,, and the
recursion time I, without relying on any historical
value of a.

US 9,478,313 B2

3

However, if a recursive variable cannot be converted into
a stateless expression, it will be calculated recursively,
which is very slow.

In addition, as the conventional solution for a per-pin
MTL compiler needs to expand the variable to a correspond-
ing expression using a semantic processor. However, scal-
ability is unfortunately limited. When test patterns (pro-
gramming patterns of a test program) become more
complex, the compiling time and memory (internal memory)
consumption increase sharply.

For example, when using a PRBS (Pseudo Random
Binary Sequence) to test a DDR4 SDRAM (Double-Data-
Rate Fourth Generation Synchronous Dynamic Random
Access Memory), it may be impossible for a conventional
MTL compiler to accomplish compilation of DDR4 PRBS
test patterns because the PRBS test pattern has complex
recursive variables and complex logic and the compilation
may require more than 100 G free memory on a workstation.

In test of SoC chip, the logic in the test patterns becomes
more and more complex, and registers are simulated in
patterns, which are very different from traditional stateless
memory test patterns. That is, the patterns used to simulate
registers are stateful. In this case, compiling the test patterns
consumes substantial memory (several Giga Bytes, for
example) on a workstation, and the compiling time is long,
for example, more than 1 hour.

SUMMARY

Therefore it would be advantageous to provide a mecha-
nism that can compile a complex test program with high
efficiency.

Embodiments of the present disclosure employ a memory
test language compiler that comprises a fast semantic pro-
cessor for interpreting programming patterns in a test pro-
gram. The fast semantic processor can convert stateful
patterns into stateless patterns and then generate an output
based on the stateless patterns in a device access timing
generation module. The fast semantic processor can gener-
ate a closure for a device access line as the output. In the
state of the closure, each device access line is in a closed
state. The fast semantic processor can generate a standalone
tree from an abstract syntax tree of the test program and
calculate interdependency of the variables in the test pro-
gram according to the standalone tree. Loop dependency for
each assignment in the test program is calculated according
to the standalone tree. A functor is formed from the inter-
dependency of the variables and the loop dependency and a
cache is used to handle recursive variables. The functor is
propagated to device access lines as output, wherein the
functor references the cache when needed.

According to one embodiment of the present disclosure,
a method of compiling a test program comprises accessing
atest program, generating a standalone tree from the abstract
syntax tree of the test program, calculating interdependency
of variables in the test program according to the standalone
tree, calculating loop dependency for each assignment in the
test program according to the standalone tree, forming a
functor from the interdependency of the variables and the
loop dependency, and using a cache to handle recursive
variables, wherein the functor references the cache when
needed, and propagating the functor to device access lines as
output. The standalone tree may be a duplicate of data of the
abstract syntax tree that includes data required for calculat-
ing the interdependency of the variables and the loop
dependency. The cache may contain calculation history

10

15

20

25

30

35

40

45

50

55

60

65

4

records of the functor. The interdependency of the variables
and the loop dependency may be calculated by traversing the
standalone tree.

According to another embodiment of the present disclo-
sure, a computer implemented method of compiling test
programs comprises: receiving a test program that comprises
a stateful pattern; creating a standalone tree from an abstract
syntax tree that represents the test program; calculating
interdependency of variables in the test program according
to the standalone tree; calculating loop dependency for each
assignment in the test program according to the standalone
tree; and generating a closure for each device access line to
convert the stateful pattern to a stateless pattern such that a
device access line acts in a close state, wherein the device
access line comprises a sequence executable by a test
processor.

According to another embodiment of the present disclo-
sure, a system comprises a processor and a memory coupled
to said processor and comprising instructions that, when
executed by said processor, cause the processor to perform
a method of compiling a memory test language program.
The instructions comprises: a fast semantic processor and a
device access timing generation module. The fast semantic
process is configured to interpret programming patterns
contained in a test program, wherein the interpreting com-
prises converting stateful patterns into stateless patterns. The
device access timing generation module configured to gen-
erating an output based on the stateless patterns, wherein the
output is executable by a test processor to generate a binary
sequence for test.

The embodiments can reduce consumption of workstation
memory and can shorten the compiling time significantly.

It is noted that the content of the summary section is only
provided as a simplified introduction and are not to be used
to interpret or limit the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will be better
understood from a reading of the following detailed descrip-
tion, taken in conjunction with the accompanying drawing
figures in which like reference characters designate like
elements and in which:

FIG. 1 is a block diagram of an exemplary MTL compiler
according to an embodiment of the present disclosure.

FIG. 2 is a flow chart of an exemplary method for
compiling a test program according to an embodiment of the
present disclosure.

DETAILED DESCRIPTION

Reference will now be made in detail to the preferred
embodiments of the present invention, examples of which
are illustrated in the accompanying drawings. While the
invention will be described in conjunction with the preferred
embodiments, it will be understood that they are not
intended to limit the invention to these embodiments. On the
contrary, the invention is intended to cover alternatives,
modifications and equivalents, which may be included
within the spirit and scope of the invention as defined by the
appended claims. Furthermore, in the following detailed
description of embodiments of the present invention, numer-
ous specific details are set forth in order to provide a
thorough understanding of the present invention. However,
it will be recognized by one of ordinary skill in the art that
the present invention may be practiced without these specific
details. In other instances, well-known methods, procedures,

US 9,478,313 B2

5

components, and circuits have not been described in detail
s0 as not to unnecessarily obscure aspects of the embodi-
ments of the present invention. The drawings showing
embodiments of the invention are semi-diagrammatic and
not to scale and, particularly, some of the dimensions are for
the clarity of presentation and are shown exaggerated in the
drawing Figures. Similarly, although the views in the draw-
ings for the ease of description generally show similar
orientations, this depiction in the Figures is arbitrary for the
most part. Generally, the invention can be operated in any
orientation.

Notation and Nomenclature:

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated
that throughout the present invention, discussions utilizing
terms such as “processing” or “accessing” or “executing” or
“storing” or “rendering” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories and other computer
readable media into other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage, transmission or
client devices. When a component appears in several
embodiments, the use of the same reference numeral signi-
fies that the component is the same component as illustrated
in the original embodiment.

To test an integrated circuit (IC) such as a memory or an
SoC chip, a test program is first generated and includes
various test patterns (sentences). Then in an MTL compiler,
the test patterns are converted (interpreted) by a semantic
processor and repeat trees are generated by a device access
timing generation module.

FIG. 1 shows the block diagram of an exemplary MTL
compiler 100 according to an embodiment of the present
disclosure. As shown, the MTL compiler 100 includes an
FSP (Fast Semantic Processor) 102 and a device access
timing generation module 104. A test program is provided to
the MTL compiler 100. Although a C-style program is used
herein as an exemplary test program, as described above, a
test program processed according to the present disclosure
can be written in any other suitable language. As is known
by a person of ordinary skill in the art, a test program can be
represented by an abstract syntax tree.

The FSP 102 can interpret the test program, including
converting stateful patterns into stateless patterns. The
device access timing generation module 104 can generate an
output, e.g., a device access line, based on the stateless
patterns.

To convert stateful patterns into a stateless frame, the
MTL compiler 100 according to an embodiment utilizes a
fast semantic processor (FSP) 102 configured to treat the
C-style program as an assignment relationship propagation
tree and the device access lines as leaves, thereby forming
a decision tree. Therefore, the fast semantic processor for
per-pin APG according to an embodiment of the present
disclosure can be based on a decision tree.

The FSP 102 can generate a closure for each device access
line so that a variable can be evaluated in a “stateless” way.
The closure indicates a state in which any other variable or
any other loop need not be referenced recursively. In a
closure state, each device access line acts in a closed state.

10

15

20

25

30

35

40

45

50

55

60

65

6

By generating closures, stateful patterns can be converted
into stateless patterns, thereby avoiding recursive calcula-
tions.

To create a closure, the FSP 102 can trace the assignment
from creation of variables to the variable reference in the
device access line by creating a standalone tree based on the
abstract syntax tree. Loop dependency makes the tracing
very complex and difficult. The standalone tree may be a
duplicate of the abstract syntax tree, but does not need to
include all information of the abstract syntax tree. Instead, it
may include only the data required for calculation of vari-
able interdependency and loop dependency as below.

FIG. 2 shows a flow chart of a method 200 for compiling
a test program according to an embodiment. In step S202,
the MLT compiler 100 accesses a test program, for example,
a C-style program. As described above, an abstract syntax
tree can be generated from the test program.

Then in step S204, a standalone tree is created from the
abstract syntax tree. For example, the standalone tree
includes data duplicated from the abstract syntax tree and
needed for calculating variable interdependency and loop
dependency herein below.

In step S206, interdependency of variables in the test
program is calculated. The calculation is performed based on
the standalone tree, for example, by traversing the stand-
alone tree. The interdependency of variables may be deter-
mined according to the assignment relationship among dif-
ferent variables as defined by the test program. For example,
based on the assignment relationship expressed as a=b+c,
the interdependency between a and b, ¢ can be calculated.

In step S208, loop dependency is calculated for each
assignment in the test program. The loop dependency refers
to the dependency among different loops. The calculation is
also performed based on the standalone tree, for example, by
traversing the standalone tree.

In step S210, a functor is used to trace assignments and a
cache is used to handle recursive variables, wherein the
cache is referenced by functors when needed. In particular,
a functor is used as a container for tracing assignments,
which contains interdependency of variables and loop
dependency. That is, a functor is formed based on interde-
pendency of variables and loop dependency. The use of the
cache removes recursive calculation of recursive variables.
For example, if a recursive variable is calculated by 10
loops, the calculation result of each loop will be regarded as
a breakpoint, and values of 10 breakpoints are all stored in
the cache. In fact, the cache stores calculation records of the
respective functors. Thus, when a functor requires a certain
loop of a recursive variable, only a calculation history record
(also referred to as a breakpoint value) corresponding to the
loop needs to be referenced from the cache. By utilization of
functors, it is unnecessary for the variable to be expanded to
an expression. By utilization of the cache, recursive calcu-
lations are not required any longer.

In step S212, the functor is propagated to device access
lines as outputs. The device access lines are outputs of the
MTL compiler for the respective pins.

In this way, the MTL compiler 100 generates repeat trees
to be executed by the test processor, and then the test
processor executes the repeat trees to generate the binary
sequence for test. The steps S204 to S212 shown in FIG. 2
can be performed by the FSP 102 or any other suitable
circuits.

The pattern vector file (binary sequence) generated by an
MTL compiler according to the present disclosure can be
identical to that generated by a conventional MTL compiler.

US 9,478,313 B2

7

Therefore, the MTL compiler according to an embodiment
of the present invention has the same effect as the conven-
tional MTL compiler.

The binary sequence for a test is provided to a DUT via
an excitation signal generation module, and then the DUT
outputs a process result. The process result is compared with
an expected result to determine whether the DUT can
operate properly. If the process result is different from the
expected result, a fault in the DUT can be declared.

8
TABLE 2-continued

Memory Consumption on

Workstation Compiling Time

MTL Compiler with 5 Seconds
Fast Semantic

Processor

68M Bytes

As can be seen from Table 2, in the example, 2189M

In order to locate a fault point in the DUT, reconstruction 10 Bytes of workstation memory is consumed for the conven-
needs to be performed. For example, reconstruction func- tional MTL compiler to finish compiling the PRBS pattern
tions can be generated by the MTL compiler and stored in and the compiling time is 1249 seconds. In contrast, only
a reconstruction library. .The reconstruction functhns gen- 68M Bytes of workstation memory is consumed by the MTL
erated by the MTL compller. according to an embodlment. of |5 compiler with FSP according to an embodiment of the
the present disclosure are improved so that the execution present disclosure and the compiling time is as short as 5
time spent on calculating fault address from a cycle number seconds.
advantageously decreases. .

In an embodiment, a cache is used which deviates the Table 3 shows yet another example result of compiling a
need for recursive calculation. The result is shared among PRBS pattern.
respective pins, thereby reducing compiling time. In addi-
tion, by using functors, expanding a variable to an expres- TABLE 3
sion is no longer needed, thereby reducing the memory M .

. [. [emory Consumption on
consumption for compiling and shortening the compiling Workstation Compiling Time
time.
S 25 .

The cache also shortens the reconstruction time in pattern gg?g’ eill“élronal MTL 738M Bytes 4764 Seconds
exe.chion.. Furthermpre, the functor and cache allow more MTLPCOmpﬂer with 93M Bytes 9 Seconds
optimization to be introduced, for example, JIT (Just-In- Fast Semantic
Time) compilation with LLVM (Low-Level Virtual Processor
Machine). 0

Specific examples will be given hereinafter to illustrate .
the improvement on memory consumption and compiling As can be seen from Table. 3. in the example, 5758M
time by the MTL compiler with FSP according to an Bytes of workstation memory is consumed for the conven-
embodiment. tional MTL compiler to finish compiling the PRBS pattern

Table 1 shows an example result of compiling a PRBS and the compiling time is 4764 seconds. In contrast, only
pattern for testing DDR4 SDRAM (Double-Data-Rate 93M Bytes of workstation memory is consumed by the MTL
Fourth Generation Synchronous Dynamic Random Access compiler with FSP according to an embodiment of the
Memory). resent disclosure and the compiling time is as short as 9

ry p piling
seconds.
TABLE 1 40 The pattern used for testing an SoC may be very com-
Memory Consumption on plicated, especially an SoC chip with registers. Such a
Workstation Compiling Time scenario is simulated herein. The program code in the
. . example case is as follows:
Conventional MTL >96G Bytes N/A (cannot finish
Compiler compiling)
MTL Compiler with 33M Bytes 6 Seconds 45
Fast Semantic a=11, b=12, ¢=13, d=14;
Processor main (){
for (k1=0;k1<3;k1++){
for (k2=0;k2<3;k2++){

As can be seen from Table 1, the conventional MTL for (k3=0:k3<3;k3++){
compiler cannot finish compiling the PRBS pattern because 30 for a;ir:?;k_‘gzlﬁfﬁ{z) (
the memory needed exceeds the avgila.ble memory on the }é;afl;czb +_1;d=c Flasdtl; aced (ab.cd);
workstation. In contrast, the compilation can be accom- for (z=05z<8;z+=2) {
plished within 6 seconds with 33M Bytes of workstation beb+lic=ctl; accO (a,bc,d)
memory by the MTL compiler with FSP according to an for 0:_(3;59_;{;;231{ ace-(abed):
embodiment of the present disclosure. The consumption of 55 for (i=,0-i_<8- i+-2) { T
memory and the compiling time are both significantly a=b+1; b=c+1; c=d+1;d=a+1;
reduced. accl (a,b,c,d);

Table 2 shows another example result of compiling a
PRBS pattern. £]J>.=a+1; accO (a,b,c,d);

60 b=c+1; c=d+1; acc0 (a,b,c,d);
TABLE 2 Y
Memory Consumption on
Workstation Compiling Time The program code is compiled with the conventional
Conventional MTL 1249 Seconds 65 MTL compiler and the MTL compiler according to an

2189M Bytes
Compiler

embodiment of the present disclosure respectively. The
results are compared in Table 4.

US 9,478,313 B2

9
TABLE 4
Memory Reconstruction
Consumption on Compiling Time
Workstation — Time (34020 cycles * 2 pins)

Conventional 256M Bytes 96 Seconds 87.34 Seconds
MTL
Compiler
MTL 13M Bytes 1 Second 0.16 Seconds
compiler
with Fast
Semantic
Processor

As can be seen from Table 4, in the example, 256M Bytes
of workstation memory is consumed for the conventional
MTL compiler to finish compiling the SoC pattern and the
compiling time is 96 seconds. In contrast, only 13M Bytes
of workstation memory is consumed by the MTL compiler
with FSP according to an embodiment of the present dis-
closure and the compiling time is as short as 1 second.
Moreover, for the reconstruction process with 34,020 cycles
of 2 pins, the reconstruction time used by the conventional
MTL compiler is 87.34 seconds, while the reconstruction
time by using the MTL compiler according to an embodi-
ment of the present disclosure is 0.16 seconds.

As can be seen, the MTL compiler with a fast semantic
processor according to an embodiment of the present dis-
closure advantageously significantly reduces consumption
of workstation memory and shortens the compiling time and
reconstruction time, thereby improving compiling effi-
ciency.

Although certain preferred embodiments and methods
have been disclosed herein, it will be apparent from the
foregoing disclosure to those skilled in the art that variations
and modifications of such embodiments and methods may
be made without departing from the spirit and scope of the
invention. It is intended that the invention shall be limited
only to the extent required by the appended claims and the
rules and principles of applicable law.

What is claimed is:

1. A non-transitory computer-readable storage medium
embodying instructions that, when executed by a processing
device, implements a test program compiler, said test pro-
gram compiler comprising:

a fast semantic processor configured to perform interpret-
ing of programming test patterns for testing an inte-
grated circuit through an automated test equipment
(ATE), wherein the test patterns are contained in a test
program, wherein the interpreting comprises convert-
ing stateful patterns into stateless patterns; and

a device access timing generation module configured to
generate an output based on the stateless patterns,
wherein the output is executable by a test processor to
generate a binary sequence for testing an integrated
circuit device, wherein the fast semantic processor is
free of recursive calculation of recursive variables.

2. The non-transitory computer-readable storage medium
of claim 1, wherein the fast semantic processor is configured
to generate a closure for a device access line as the output,
wherein the device access line corresponds to a test pin of
the integrated circuit device, and wherein, in a state of the
closure, each device access line is in a closed state.

3. The non-transitory computer-readable storage medium
of claim 2, wherein the fast semantic processor is further
configured to:

generate a standalone tree from an abstract syntax tree
that represents the test program;

10

15

20

25

30

35

40

45

50

55

60

65

10

calculate interdependency of variables in the test program

according to the standalone tree;

calculate loop dependency for each assignment in the test

program according to the standalone tree; and

form a functor comprising the interdependency of the

variables and the loop dependency.

4. The non-transitory computer-readable storage medium
of claim 3, wherein the standalone tree only comprises data
for calculating the interdependency of variables and the loop
dependency.

5. The non-transitory computer-readable storage medium
of claim 3, wherein the fast semantic process is further
configured to:

use a cache to store a calculation history of recursive

variables defined by the test program; and

propagate the functor to device access lines as output, and

wherein the functor is operable to reference the cache
for a breakingpoint value of a calculation loop of a
recursive variable.

6. The non-transitory computer-readable storage medium
of claim 3, wherein the interdependency of variables is
calculated according to assignment relationship among dif-
ferent variables defined in the test program.

7. The non-transitory computer-readable storage medium
of claim 3, wherein the interdependency of variables is
calculated by traversing the standalone tree.

8. A computer implemented method of compiling test
programs, said method comprising:

receiving a test program that comprises a stateful pattern,

wherein the test program is configured for testing an
integrated circuit through an automated test equipment
(ATE);

creating a standalone tree from an abstract syntax tree that

represents the test program;

calculating interdependency of variables in the test pro-

gram according to the standalone tree;
calculating loop dependency for each assignment in the
test program according to the standalone tree; and

generating a closure for each device access line to convert
the stateful pattern to a stateless pattern such that a
device access line acts in a close state, wherein the
device access line comprises a sequence executable by
a test processor.

9. The computer implemented method of claim 8, wherein
the generating the closure comprises:

forming a functor based on the interdependency of the

variables and the loop dependency; and

using a cache to handle recursive variables, wherein the

functor is operable to reference the cache when needed;
and

propagating the functor to device access lines as output.

10. The computer implemented method of claim 8,
wherein the standalone tree includes data for calculating the
interdependency of the variables and the loop dependency,
and wherein the data is obtained from the abstract syntax
tree.

11. The computer implemented method of claim 9,
wherein the cache contains calculation history records of the
functor.

12. The computer implemented method of claim 8,
wherein the interdependency of the variables and the loop
dependency are calculated by traversing the standalone tree.

13. A system comprising:

a processor;

a memory coupled to said processor and comprising

instructions that, when executed by said processor,

US 9,478,313 B2

11

cause the processor to perform a method of compiling
a memory test language program, the instructions com-
prising:
a fast semantic processor configured to:
interpret programming patterns contained in a test
program that is configured for testing an integrated
circuit through an automated test equipment
(ATE), wherein interpreting the programming pat-
terns comprises converting stateful patterns into
stateless patterns;
generate a closure for a device access line as the
output, and in the state of a closure, each device
access line is in a closed state;
generate a standalone tree from an abstract syntax
tree that represents the test program;
calculate interdependency of variables in the test
program according to the standalone tree;
calculate loop dependency for each assignment in the
test program according to the standalone tree; and
form a functor containing the interdependency of the
variables and the loop dependency; and

5

10

15

20

12

adevice access timing generation module configured to
generating an output based on the stateless patterns,
wherein the output is executable by a test processor
to generate a binary sequence for test.

14. The system of claim 13, wherein the standalone tree
only comprises data for calculating the interdependency of
variables and the loop dependency.

15. The system of claim 13, wherein the fast semantic
process is further configured to use a cache to store calcu-
lation history of recursive variables and propagate the func-
tor to device access lines as output, and wherein the functor
is operable to reference the cache for a breakingpoint value
of a calculation loop of a recursive variable.

16. The system of claim 13, wherein the interdependency
of variables is calculated according to assignment relation-
ship among different variables that are defined in the test
program.

17. The system of claim 13, wherein the fast semantic
processor is free of recursive calculation of recursive vari-
ables.

